

Understanding ballast water management

Guidance for shipowners and operators

Contents

1	Introduction	3
2	Regulation	4
	The BWM Convention	4
	The United States Coast Guard (USCG) regulations	5
	European Union regulations	6
	Other regulations	6
	Ballast water treatment standards	6
	Approval	7
	Ballast Water Management Plans	8
	Sampling and analysis	8
2.9	Port state control	8
3	How to comply	9
3.1	Planning for compliance	9
3.2	Achieving compliance in service	10
3.3	Alternative methods of compliance	10
4	Treatment processes	12
	Overview	12
5	Selecting, installing and operating	
- 4	a ballast water treatment system	15
	Available ballast water treatment systems	15
	Selecting a treatment system	15
5.3	Installing ballast water treatment systems	17
	– general considerations	17
6	Active substances – hazards	
	and safety precautions	20
		_
7	Frequently asked questions	21
8	Useful references	23
9	Listing by supplier	24
10	Glossary of symbols, terms and abbreviations	25
		_
11	Consultancy capability	26

Cover image: A coloured scanning electron micrograph (SEM) of marine diatoms (blue).

Lloyd's Register Group Limited, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as 'Lloyd's Register'. Lloyd's Register assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

Copyright © Lloyd's Register EMEA. 2013.

1. Introduction

Shipping moves over 80% of the world's commodities and transfers approximately three to five billion tonnes of ballast water internationally every year. Ballast water is essential to the safe and efficient operation of shipping, but it also poses a serious ecological, economic and health threat through the transfer of invasive aquatic species inadvertently carried in it.

Ballast water contains a variety of organisms including bacteria and viruses and the adult and larval stages of the many marine and coastal plants and animals. While the vast majority of such organisms will not survive to the point when the ballast is discharged, some may survive and thrive in their new environment. These 'non-native species', if they become established, can have a serious ecological, economic and public health impact on the receiving environment.

The transfer of invasive marine species into new environments via ballast water has been identified as one of the major threats to the world's oceans. In response, the United Nations Conference on Environment and Development (UNCED) held in Rio de Janeiro in 1992, in its Agenda 21, called on the International Maritime Organization (IMO) and other international bodies to take action to address the problem.

By this time, the IMO had been seeking a solution for over 10 years. In 1991, it published Guidelines for Preventing the Introduction of Unwanted Organisms and Pathogens from Ship's Ballast Waters and Sediment Discharges. These were updated in 1993. In 1997, the IMO published Guidelines for Control and Management of Ships' Ballast Water to Minimize the Transfer of Harmful Aquatic Organisms and Pathogens (Resolution A.868(20)).

In February 2004, the IMO adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments (the Ballast Water Management or BWM Convention) to regulate discharges of ballast water and reduce the risk of introducing non-native species from ships' ballast water. To complement the BWM Convention, the IMO adopted over 15 sets of guidelines and other documents contained in its Marine Environmental Protection Committee (MEPC) resolutions and circulars.

The BWM Convention imposes a challenging ballast water discharge standard. In response to this, a number of technologies have been developed and commercialised by different vendors. Many have their origins in land-based applications for municipal and industrial water and effluent treatment, and have been adapted to meet the requirements of the BWM Convention and shipboard operation. These systems must be tested and approved in accordance with the relevant IMO Guidelines.

In addition to the IMO, other national bodies have introduced regulations in response to national concerns. The most influential of these is the United States Coast Guard (USCG) which has established both regulations and guidelines to prevent the introduction and spread of aquatic nuisance species. The USCG's final rule was published on 23 March 2012 in the Federal Register, and became effective on 21 June, 2012.

This publication gives an overview of the BWM Convention requirements and guidance on preparing for its implementation, including what you need to consider when selecting, procuring and installing a ballast water treatment system. There is also a frequently asked questions section together with a list of useful reference documents and websites which provide further information and guidance.

This publication also provides updated information on suppliers, and indicates the status of systems in relation to the approval process. An outline description of water treatment processes and an appraisal of commercially available and developing technologies for ballast water treatment are also provided, along with information relating to operation of the systems as the technologies become more widely used.

The continued assistance of the technology suppliers who contributed much of the information it contains is gratefully acknowledged.

2. Regulation

2.1 The BWM Convention

Applicability

The BWM Convention will apply to all ships including submersibles, floating craft, floating platforms, FSUs and FPSOs. It will not apply to:

- ships not designed to carry ballast water
- warships, naval auxiliary ships or other ships owned or operated by a state
- ships only on non-commercial service, or
- ships with permanent ballast water in sealed tanks.

Compliance schedule

The BWM Convention will enter into force 12 months after ratification by 30 States, representing 35 percent of the world's merchant shipping tonnage. For the current status of the BWM Convention please visit the IMO's website at www.imo.org/About/Conventions/StatusOfConventions

Once the BWM Convention has entered into force, all ships will be required to manage their ballast water on every voyage by either exchanging or treating it using an approved ballast water treatment system. The compliance schedule for when a ship can only use treatment is shown in Table 1.

Ballast capacity	Constructed before 2009	Constructed in or after 2009 but before 2012	Constructed in or after 2012	
Less than 1,500m ²	Entry into force (EIF)* before 2016: by first IOPP** renewal survey after the anniversary of the delivery of the ship in 2016 EIF after 2016: by first IOPP renewal survey	By first IOPP renewal survey at	fter FIF	
Between 1,500m ³ and 5,000m ³	EIF before 2014: by first IOPP** renewal survey after the anniversary of the delivery of the ship in 2014	sy mseron rememursance, enter in		
	EIF after 2014: by first IOPP renewal survey			
Greater than 5,000m ³	EIF before 2016: by first IOPP** renewal survey after the anniversary of the delivery of the ship in 2016 EIF after 2016: by first IOPP renewal survey		By first IOPP renewal survey after EIF	

Table 1 - The compliance schedule for treatment

Once the BWM Convention has entered into force all ships of 400 gross tonnes (gt) and above will be required to have on board an approved Ballast Water Management Plan and a Ballast Water Record Book, and to be surveyed and issued with an International Ballast Water Management Certificate. For ships whose flag administration has not ratified the BWM Convention a certificate or statement of compliance can be issued.

Prototype technologies

Ships participating in a programme approved by the administration may use a prototype technology for up to five years before being required to install an approved treatment system in accordance with the compliance schedule in Table 1. A prototype system is a system under test and evaluation for meeting or exceeding the requirements of regulation D-2.

^{*} Entry into force refers to entry into force of the BWM Convention. This will occur 12 months after ratification by 30 states, representing 35 percent of the world's merchant shipping tonnage

^{**} The IOPP renewal survey refers to the renewal survey associated with the IOPP Certificate required under MARPOL Annex I

Surveys and certification

All ships over 400 gt are subject to surveys and certification. Ships below 400 gt will be subject to national survey and certification regimes.

The survey and certification scheme under the BWM Convention is similar to those under all other IMO Conventions.

On completion of an initial survey, an International Ballast Water Certificate will be issued for a ship whose flag has ratified the BWM Convention; for other ships, a Ballast Water Management Certificate of Compliance will be issued. Both the Certificates and the Statement will be valid for five years subject to annual, intermediate and renewal surveys.

The IMO has published Interim Survey Guidelines (contained in the Circular, BWM.2/Circ.7) and it is expected that these will be incorporated into the IMO's Harmonised System of Survey and Certification Guidelines (Resolution A.997(25)) once the BWM Convention enters into force.

Exemptions

An exemption may be granted to a ship or ships on a voyage or voyages between specified ports or locations, or to a ship which operates exclusively between specified ports or locations. An example of a ship that would qualify for this exemption would be a ferry trading solely between one or more ports.

Any exemption granted is valid for a maximum of five years subject to an intermediate review and provided the ship does not mix ballast water or sediments other than between the ports or locations specified in the exemption. However it should be noted that the exemptions can be withdrawn at any time by the issuing administrations.

To be eligible for an exemption a risk assessment must be carried out in accordance with IMO Resolution MEPC.162(56) – Guidelines for Risk Assessment under Regulation A-4 of the BWM Convention.

For further details on exemptions, you should contact the flag administration.

2.2 The United States Coast Guard (USCG) regulations

Applicability

All ships calling at US or Canadian ports and planning to discharge ballast water must carry out ballast water exchange or treatment in addition to sediment management. However, ballast water exchange will only be allowed until the implementation dates for treatment systems shown in Table 2.

Compliance schedule

Table 2 indicates the compliance dates by which ships discharging ballast water in US or Canadian waters are required to have a treatment system installed.

	Ballast water capacity	Date constructed	Compliance date
New vessels	All	On or after 1 December, 2013	On delivery
Existing vessels	Less than 1,500m ³	Before 1 December, 2013	First scheduled drydocking after 1 January, 2016
	1,500 – 5,000m3	Before 1 December, 2013	First scheduled drydocking after 1 January, 2014
	Greater than 5,000m ³	Before 1 December, 2013	First scheduled drydocking after 1 January, 2016

Table 2 – The USCG compliance schedule

Exemptions

The following vessels are exempt from ballast water management requirements, reporting requirements, and record-keeping requirements:

- crude oil tankers engaged in coastwise trade; and
- vessels which operate exclusively within one 'Captain of the Port' (COTP) zone.

The following vessels are exempt only from ballast water management requirements:

- seagoing vessels that operate in more than one COTP Zone, do not operate outside of the Exclusive Economic Zone (EEZ), and are less than or equal to 1,600 gross register tons or less than or equal to 3,000 gross tons (International Convention on Tonnage Measurement of Ships, 1969).
- non-seagoing vessels
- vessels that take on and discharge ballast water exclusively in one COTP zone.

Extensions

If the options given by the USCG are not practicably available despite all efforts, vessel owners can request an extension from the USCG to the implementation schedule. The availability of an Alternate Management System (AMS) (see section 2.5) does not prohibit a vessel owner from receiving an extension. The USCG regulations provide the process for requesting these extensions and when it can be documented. Extension requests must be submitted to the Coast Guard no later than 12 months before the scheduled implementation date.

2.3 European Union regulations

The European Commission has published a proposal for a regulation on the prevention and management of the introduction and spread of invasive alien species. The proposal's aim is to address the problem of invasive alien species to protect native biodiversity and ecosystem services; and to minimise and mitigate the impacts on human health and economy.

The proposal is for three types of interventions: prevention; early warning and rapid response; and management. In summary, the proposal states that a large proportion of invasive alien species are introduced unintentionally into the Union; therefore it is crucial to manage these pathways. Action in this area needs to be gradual and should include voluntary measures, such as the actions proposed by the BWM Convention, and mandatory measures which should build on the experience gained in the Union and in member states in managing certain pathways, including measures established through the BWM Convention.

The full details of the Regulation of the European Parliament and of the Council on the prevention and management of the introduction and spread of invasive alien species can be found at http://ec.europa.eu/environment/nature/invasivealien/docs/proposal/en.pdf

2.4 Other regulations

Other national requirements can be found in our National Ballast Water Management Requirements guidance document. To download a copy, visit www.lr.org/bwm

2.5 Ballast water treatment standards

Regulation D-2 of the BWM Convention sets the standard that ballast water treatment systems must meet (Table 3). Ballast water treatment systems must have a type approval certificate in compliance with the IMO Guidelines for the Approval of Ballast Water Management Systems (Resolution MEPC. 174(58)), which updated Resolution MEPC.125(53)).

It should be noted that the USCG treatment discharge standard is the same as the IMO BWM Convention D-2 Standard.

Organism category	Regulation
Plankton, >50 µm in minimum dimensions	<10 cells/m3
Plankton, 10-50 μm	<10 cells/ml
Toxicogenic Vibrio cholera (O1 and O139)	<1 colony forming unit (cfu)/100ml or less than 1cfu/g (wet weight)
Escherichia coli	<250 cfu/100ml
Intestinal Enterococci	<100cfu/100ml

Table 3 - The IMO D-2 standard for discharged ballast water

2.6 Approval

The BWM Convention

Technologies developed for ballast water treatment are subject to approval through specific IMO processes and testing guidelines. These are designed to ensure that such technologies meet the relevant IMO standards, are sufficiently robust, have minimal adverse environmental impact and are suitable for use in the specific shipboard environment.

Ballast water treatment systems are required to be tested against the following IMO guidelines:

All systems:

 Guidelines for Approval of Ballast Water Management Systems (referred to as the 'G8 Guidelines'). IMO resolution MEPC.174(58) which revokes MEPC.125(53).

In addition, for systems employing active substances:

- Procedure for Approval of Ballast Water Management Systems that make use of Active Substances (referred to as the 'G9 Guidelines'). IMO resolution MEPC.169(57) which revokes MEPC.126(53).

Approval consists of both shore-based testing of a production model, to confirm that the D-2 discharge standards are met; and shipboard testing, to confirm that the system works in service.

USCG regulations

The USCG requires that ballast water must be treated with a USCG type approved ballast water treatment system, in accordance with the schedule in Table 2. Recognising that there are currently no USCG type approved systems, the USCG has provided guidance on how to apply for an extension which would allow ships to operate in US waters without treating ballast water for up to five years after the compliance date in Table 2.

In addition, to avoid penalising ships that have already fitted a treatment system approved by another flag administration, the USCG has introduced the Alternate Management System (AMS). Some important facts about AMS are given below:

- AMS are ballast water treatment systems which have been accepted for use in US or Canadian waters by the USCG
- AMS is a temporary solution until the USCG type approved systems are available
- AMS approval does not necessarily mean that the system will achieve the USCG type approval
- A ship with an AMS installed can only use this system for a period of five years beyond the date when the ship would otherwise be required to comply with the USCG discharge standard
- The list of AMS approved systems can be found through US Department of Homeland Security's website at http://homeport.uscg.mil/ballastwater

2.7 Ballast Water Management Plans

All ships of 400 gt and above will be required to have on board an approved Ballast Water Management Plan and a Ballast Water Record Book to comply with the BWM Convention. The Ballast Water Management Plan is required to:

- assist the ship in complying with international regulations to minimise the risk of the transfer of harmful aquatic organisms and pathogens in ships' ballast water and associated sediments
- identify the ship's Ballast Water Management Officer
- consider ship safety elements, provide information to PSC officers on the ship's ballast handling system and confirm that ballast water management can be effectively planned
- include training on BWM operational practices
- be written in the working language of the ship. If this language is not English, French or Spanish a translation into one of these languages must be included.

2.8 Sampling and analysis

The BWM Convention

The IMO's guidance on ballast water sampling and analysis is given in the G2 Guidelines. The purpose of this guidance is to provide general recommendations on methodologies and approaches to sampling and analysis to test for compliance with the standards described in regulations D-1 and D-2 of the BWM Convention.

Sampling and analysis for compliance testing is a complex issue. According to the guidelines, testing for compliance can be performed in two steps. An indicative analysis of ballast water discharge may be undertaken as a first step to establish whether a ship is potentially in compliance with the BWM Convention prior to a detailed analysis.

When testing for compliance, the sampling protocol used should result in a representative sample of the whole discharge of the ballast water from any single tank or any combination of tanks being discharged.

USCG regulations

The USCG assesses compliance as part of its regular vessel inspections. This compliance approach follows a similar regime in place for all other equipment inspections. In general, a Coast Guard inspector would review documentation including the type approval certificate and AMS acceptance letter; and verify the crew's knowledge regarding use of equipment and its condition. If the results of this inspection are not satisfactory, the USCG would take samples of the ballast water discharge to test that the system is working effectively. It should be noted that the USCG continues to develop more rapid and accurate methods for sampling and analysis.

In addition, the USCG and the Environment Protection Agency (EPA) signed a Memorandum of Understanding in 2011 regarding the EPA's Vessel General Permit (VGP) program which becomes effective in December 2013. The Memorandum allows USCG and EPA to combine compliance efforts and share information. The VGP requires ship operators to self-monitor ballast water treatment systems. This includes functional tests, and analysis of ballast water samples to confirm biological performance and that concentrations of residual chemicals are within limits.

For more information on the USCG's generic protocol for the verification of ballast water treatment technology, go to $\frac{1}{http://www.uscg.mil/hq/cg5/cg522/cg522/docs/600r10146.pdf}$

2.9 Port state control

The BWM Convention

Once the BWM Convention enters into force, ships may be subject to inspections by port states to determine whether they comply with the BWM Convention's requirements. These inspections are limited to:

- verifying certification
- inspecting the ballast water record book
- sampling ballast water in accordance with the IMO's guidelines.

USCG regulations

A report is required to be submitted to the USCG COTP 24 hours before arriving at a US or Canadian port. The ship must provide the COTP with access to the vessel in order to take samples of ballast water and sediment; examine documents; and make other enquiries to assess compliance with USCG requirements.

3. How to comply

Follow the steps in this chapter to help you plan for compliance and achieve compliance in service.

3.1 Planning for compliance

1. Understand your obligations under the BWM Convention and other national and local regulations Under the BWM Convention, you will need to:

- ensure all ballast discharges comply with regulation D-1 or D-2, i.e., that ballast is exchanged or treated: this obligation applies to ballast discharges both at sea and in port
- ensure the procedures in the Ballast Water Management Plan are followed at all times
- keep proper records in the Ballast Water Record Book
- operate and maintain ballast water treatment systems in accordance with the manufacturer's instructions.

2. Review current shipboard ballast tank, pumping and piping arrangements

Review the ballast water tanks and pumping and piping arrangements on board to identify any changes required to achieve compliance with the BWM Convention. Pay particular attention to:

- a. multi-use tanks, for example, those used for ballast and as storage (temporary or otherwise) of grey and/or black water: different water types should not be mixed and should only be discharged in accordance with the appropriate regulations. When changing from one use to another tanks should be flushed and/or cleaned to remove the previous contents. You should ensure this is achievable.
- b.eductors being used for stripping ballast tanks: it is common practice to use local sea water for the eductor drive water; consideration should be given to using only internal ballast as the eductor drive water and arrangements should be made to achieve this.

3. Develop a Ballast Water Management Plan

Start developing your Ballast Water Management Plan at an early stage. It can then be reviewed as your preparations for compliance proceed and amended with information such as the treatment system selected for installation, any safety issues and mitigation measures, crew training requirements and the name of the designated Ballast Water Management Officer.

4. Select and install a ballast water treatment system

Selecting and installing a treatment system needs careful consideration and planning. You will need to ensure the required resources are available when needed, that plans are submitted to class for approval in good time and that the system and any ancillary equipment are delivered to the ship on schedule. For further information, see Section 5.

5. Develop training for ships' staff and ensure they are adequately trained in BWM operations

A suitable staff training scheme will need to be developed and included in the Ballast Water Management Plan. Staff will need to be trained in their obligations under the BWM Convention, the ballast operations on board the ship, the operation and maintenance of the ballast water treatment system, and any safety risks and mitigation measures associated with the ballasting operations or treatment system.

6. Develop a final Ballast Water Management Plan and submit for approval

Develop a final version of the Ballast Water Management Plan, get any required internal approvals and submit the Plan for approval to class or flag as appropriate. It should be submitted in good time to avoid delays.

7. Survey and certification

When all your preparations for compliance are complete, arrange for an initial survey of the ship for issue of an International Ballast Water Management Certificate or Certificate of Compliance.

8. Understand your obligations under the USCG regulations

If your ship is calling at US or Canadian ports and planning to discharge ballast water, ballast water exchange or treatment must be carried out in addition to sediment management. However ballast water exchange will only be allowed until the implementation deadlines for treatment systems, mentioned in the previous section.

One other method which the USCG accepts for ballast water management is to use potable water (from the North American municipal system). However, the ballast tanks must be cleaned of any sediments before this application.

The USCG also requires: a Ballast Water Management Plan (this does not need to be approved); clean ballast tanks free from sediments; and a report which is to be submitted to the US Authorities 24 hours before arriving at a US or Canadian port.

3.2 Achieving compliance in service

1. Manage ballast water and sediments in accordance with the Ballast Water Management Plan

Ensure that all discharges of ballast and sediments are managed in accordance with the requirements of the BWM Convention and in accordance with the procedures in the approved Ballast Water Management Plan. Make sure that records of ballasting operations and sediment management are properly recorded in the Ballast Water Record Book.

2. Keep the Ballast Water Management Plan and Ballast Water Record Book up to date

Carry out periodic reviews of the Ballast Water Management Plan and update it as necessary. Arrange for amendments to be approved if required.

3. Ensure required surveys are carried out within the permitted range dates

Arrange for the required annual, intermediate and renewal surveys in good time and ensure they are carried out within the permitted range dates.

4. Operate and maintain equipment in accordance with the manufacturer's instructions

The ballast water treatment system should be operated and properly maintained in strict accordance with the manufacturer's instructions. The procedures in the approved Ballast Water Management Plan will reflect this requirement.

5. Monitor the treatment system's performance

The system's performance should be monitored using the installed monitoring equipment, meters or sensors. The parameters you monitor will vary according to the type of system you install. They include: flow rate/back flush frequency; active substance dosage rate; neutraliser dosage rate; power consumption; TRO (Total Residual Oxidant); and pH (acidity/alkalinity).

Having the system serviced and checked by the manufacturer on a regular basis and having biological efficacy checks carried out periodically will also help ensure the system continues to function as designed and certified.

6. Manage ballast water and sediments in accordance with USCG requirements if they apply to you

Ensure that all discharges of ballast and sediments are managed in accordance with the requirements of the USCG and in accordance with the procedures in the approved Ballast Water Management Plan. Make sure that records of ballasting operations and sediment management are properly recorded in the Ballast Water Record Book.

3.3 Alternative methods of compliance

Although most deep water ships are expected to comply by installing a fixed ballast water treatment system on board, a number of ships will choose to comply by using one or more of the alternative methods shown in Figure 1.

The BWM Convention considers the role of alternative methods of compliance as follows:

"Alternatives" – BWMC Regulation B3-6: "The requirements of this regulation (i.e. D-1 or D-2 compliance) do not apply to ships that discharge ballast water to a reception facility designed taking into account the guidelines developed by the organization for such facilities."

"Other methods" – BWMC Regulation B3-7: "Other methods of ballast water management may also be accepted as alternatives to the ballast water exchange standard and ballast water performance standard, provided that such methods ensure at least the same level of protection to the environment, human health, property of resources, and are approved in principle by IMO's Marine Environment Protection Committee."

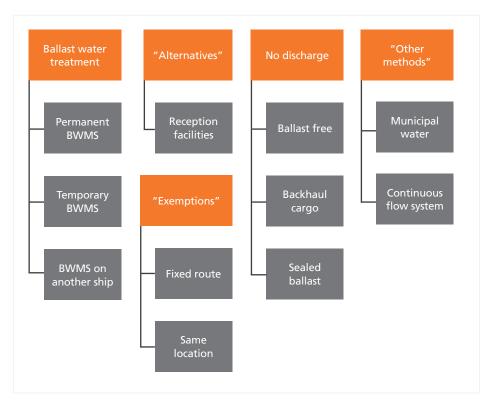


Figure 1 – Alternative methods of compliance

It should be noted that the USCG only accepts municipal water from North American supplies. However, this is not currently accepted under the BWM Convention, although it is under discussion.

4. Treatment processes

4.1 Overview

The technologies used for treating ballast water are generally derived from municipal and other industrial applications. However, their use is constrained by key factors such as space, cost and efficacy (with respect to the IMO discharged ballast water standards).

There are two generic types of process technology used in ballast water treatment:

- solid-liquid separation, and
- disinfection.

Solid-liquid separation is simply the separation of suspended solid material, including the larger suspended microorganisms, from the ballast water, either by sedimentation (allowing the solids to settle out by virtue of their own weight) or by surface filtration (removal by straining; i.e. by virtue of the pores in the filtering material being smaller than the size of the particle or organism). All solid-liquid separation processes produce a waste stream containing the suspended solids. This waste stream comprises the backwash water from filtering operations or the underflow from hydrocyclone separation. These waste streams require appropriate management and during ballasting they can be safely discharged at the point where they were taken up. On deballasting, the solid-liquid separation operation is generally bypassed.

Disinfection removes and/or inactivates micro-organisms using one or more of the following methods:

- chemical inactivation of the micro-organisms through either:
 - oxidising biocides general disinfectants which act by destroying organic structures, such as cell membranes or nucleic acids; or
 - non-oxidising biocides these interfere with reproductive, neural, or metabolic functions of the organisms.
- physicochemical inactivation of the micro-organisms through processes such as UV light, heat or cavitation
- asphyxiation of the micro-organisms through deoxygenation.

All of these disinfection methods have been applied to ballast water treatment, with different products employing different unit processes (see Table 4). Most commercial systems comprise two or more stages of treatment with a solid-liquid separation stage being followed by disinfection (Figure 2).

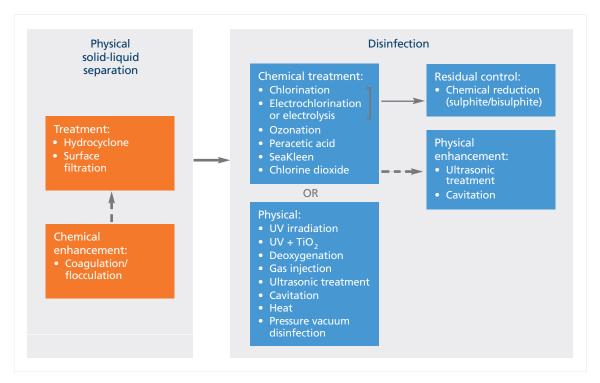


Figure 2 – Generic ballast water treatment technology process options

While disinfection by-products are an issue, and central to the approval of ballast water management systems that make use of active substances, suppliers are confident that the levels generated are unlikely to be problematic. There is a large amount of scientific and technical information on the formation of disinfection by-products that is likely to support this. Where chemicals are used as part of the treatment process, they are typically provided as concentrated solids or liquids, so that they may be easily stored on board a ship.

Ballast water treatment system processes

The range of system processes employed for ballast water treatment is shown in Table 4 with examples of filtration and UV systems shown in Figures 3 and 4 respectively. As tends to be the case, systems which employ active substances will treat on uptake only (with the exception of neutralisation prior to discharge) whereas other mechanical methods tend to treat on both uptake and discharge. A typical treatment process is shown in Figure 5.

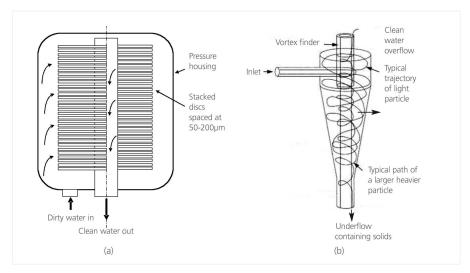


Figure 3 - Filtration (a) and hydrocyclone (b) processes

Commercial systems differ mainly in the choice of disinfection technology and the overall system configuration (i.e., the coupling of the disinfection part with solid-liquid separation, where the latter is used). Almost all have their basis in land-based systems employed for municipal and industrial water and wastewater and thus can be expected to be effective for the treatment of ballast water, albeit subject to constraints in the precise design arising from space and cost limitations.

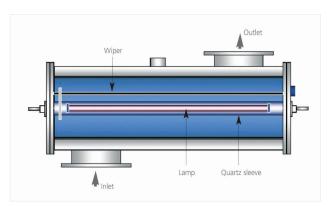


Figure 4 - UV tube and system

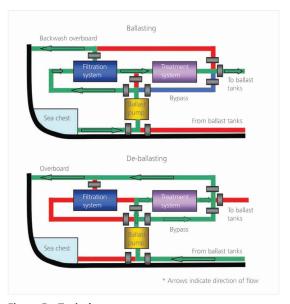


Figure 5 – Typical treatment process

Process	Method	Benefit	Considerations	Comments
Solid-liquid separat	ion			
Filtration	Generally using discs or fixed screens with automatic backwashing	Effective for larger particles and organisms	Maintaining flow with minimum pressure drop requires backwashing. Low membrane permeability means surface filtration of smaller microorganisms is not practical.	Mesh sizes are proportional to size of organism filtered (e.g., larger organisms such as plankton require mesh between 10 and 50 μ m)
Hydrocyclone	High velocity centrifugal rotation of water to separate particles	Alternative to filtration and can be more effective	Effective only for larger particles	Effectiveness depends on density of particle and surrounding water, particle size, speed of rotation and time
Coagulation	Optional pre-treatment before separation to aggregate particles to increase their size	Increasing size of particles increases efficiency of filtration or hydrocyclone separation	May require additional tank space to store water which has been treated due to long residence time for process to be effective	Ballasted flocculation uses ancillary powder (e.g., magnetite or sand) to help generate flocs which settle more quickly
Chemical disinfection	on (oxidising biocides)			
Chlorination	Classed as an oxidising biocide that, when diluted in water, destroys cell walls of micro-organisms	Well established and used in municipal and industrial water disinfection applications	Virtually ineffective against cysts unless concentration of at least 2 mg/l used. May lead to by-products (e.g., chlorinated hydrocarbons/ trihalomethanes	Efficiency of these processes varies according to conditions of the water such as pH, temperature and type of organism
Electro- chlorination	Creates oxidising solution by employing direct current into water which creates electrolytic reaction	As chlorination	As chlorination. Brine, needed to produce the chlorine, can be stored on board the vessel as feedstock for the system	Upstream pre-treatment of the water is desirable to reduce the 'demand' on the chlorination process
Ozonation	Ozone gas (1–2 mg/l) is bubbled into the water which decomposes and reacts with other chemicals to kill micro-organisms	Especially effective at killing micro-organisms	Not as effective at killing larger organisms. Produces bromate as a by-product. Ozonate generators are required in order to treat large volumes of ballast water. These may be expensive and require sufficient installation space	Systems in which chemicals are added normally need to be neutralised before discharge to avoid environmental damage in the ballast water area of discharge. Most ozone and chlorine systems are neutralised but some are not.
Chlorine dioxide	As chlorination	Effective on all micro- organisms as well as bacteria and other pathogens. It is also effective in high turbidity waters as it does not combine with organics.	Reagents used can be chemically hazardous	Chlorine dioxide has a half life in the region of 6–12 hours, according to suppliers, but at the concentrations at which it is typically employed it can be safely discharged after a maximum of 24 hours.
Peracetic acid and hydrogen peroxide	As chlorination	Infinitely soluble in water. Produces few harmful by-products and relatively stable.	Reagent is typically dosed at high levels, requires suitable storage facilities and can be relatively expensive	
Chemical disinfection	on (non-oxidising biocides)			
Menadione /Vitamin K	Menadione is toxic to invertebrates	Natural product often used in catfish farming but produced synthetically for commercial use. Safe to handle.	Treated water will typically require neutralising before discharge	
Physical disinfection	n			
Ultraviolet (UV) irradiation	Amalgam lamps surrounded by quartz sleeves produce UV light which denatures the micro-organism's DNA and prevents it from reproducing	Well established, used extensively in municipal and industrial water treatment applications. Effective against wide range of micro-organisms	Relies on good UV transmission through the water. Hence, needs clear water and unfouled quartz sleeves to be effective	Can be enhanced by combining with other reagents such as ozone, hydrogen peroxide or titanium dioxide
Deoxygenation	Reduces pressure of oxygen in space above the water with inert gas injection or by means of a vacuum to asphyxiate the microorganisms	Removal of oxygen may result in a decrease in corrosion propensity. If an inert gas generator is already installed on the ship, deoxygenation plant would take up little additional space.	Typically, the time required for organisms to be asphyxiated is between one and four days	Process has been developed specifically for ballast water treatment whereby the de-aerated water is stored in sealed ballast tanks
Cavitation	Induced by ultra-sonic energy or gas injection. Disrupts the cell wall of organisms.	Useful as pre-treatment to aid overall treatment process	Must be used in conjunction with additional treatment process downstream in order to kill all microorganisms	
Pressure/ vacuum	The majority of organisms are eliminated with a low temperature boiling condition. However, the process does not eliminate all of the bacteria.	Easy installation with a small footprint as the process does not require filters, chemicals and neutralisers.	Must be used in conjunction with additional treatment process to kill bacteria. Sediment build up must be managed as the process does not use filter.	

Table 4 – Ballast water treatment processes

Note: Descriptions provided in this table are general and may vary depending on the actual system. It is always recommended that full details of individual systems are investigated and this table alone should not be used as a basis for decision making.

5. Selecting, installing and operating a ballast water treatment system

5.1 Available ballast water treatment systems

There are a number of approved ballast water treatment systems available and there are many more systems which are expected to be submitted for test and approval in the near future. It is highly likely that in the short term there will be significant lead times for some of the more popular systems, particularly in the year leading up to entry into force of the BWM Convention and the years following entry into force when a peak in demand is expected to occur. However the early installation of ballast water treatment systems to meet the USCG requirements will mitigate this peak demand.

5.2 Selecting a treatment system

When selecting a treatment system, you need to consider:

- ship type
- max and min ballasting and de-ballasting rates
- ballast capacity
- space required (foot print and volume)
- flexibility of location of system components
- the effects of pressure drop
- integration with existing systems
- whether it is certified intrinsically safe
- power availability
- health and safety
- effects on tank structure/coatings
- availability of consumables, spares and support (servicing)
- additional crew workload
- crew training
- capital and operating cost
- system availability and delivery time.

Considerations for newbuilds

Shipbuilders should identify the options for installing ballast water treatment systems in their newbuild specifications – both within the construction programme or through retrofitting. This could involve providing system drawings to show how a selection of different treatment options might be fitted, ensuring that sufficient space has been allocated for retrofitting treatment systems if they are not included in the initial build.

Piping connections should also be fitted to ballast systems in preparation for retrofitting of the selected treatment equipment.

Considerations for existing ships

Operators will need to be aware of all modifications necessary to fit treatment systems to existing ships. It will be necessary to obtain schematic arrangements and equipment drawings from the system supplier in order for the technical department to develop a work plan. The work plan may alternatively be provided by the supplier, but the ship operator will still need to provide the ship's ballast water system drawings, functional requirements and details of compartmental spaces where the equipment is to be fitted.

Note: Although equipment manufacturers will have to obtain flag state certification for the type approval of systems, they may not be fully conversant with all the maritime regulations and codes of practice that need to be considered during their installation and operation (such as those relating to chemical hazards and confined space safety considerations). Owners' representatives should therefore carry out a review to ensure that regulations and codes of practice are not compromised.

Procurement specification considerations

In order to select a suitable system, ship operators will need to prepare a Procurement Specification for potential suppliers which details their technical requirements. This should include the following information:

- the ballast water pump flow rate that the treatment system will be required to cope with (Note: the treatment equipment capacity should be greater than the ship's ballast rate to allow for an operating margin.)
- a copy of the ballast system pipework diagrams showing the connections, pumping capacities and valves
- compartment details for the installation of treatment equipment and storage of consumable materials
- power supply availability and routing for control cabling

- certification requirements
- details of the ballast tank coatings.

Ship operators should expect suppliers to include the following information in their offer:

- confirmation that their system has sufficient capacity to meet the ship's maximum ballast flow rates
- the system's power consumption (excluding the ship's fitted ballast pumps) and any other electrical requirements
- the types of technology employed in the system
- the chemicals required and their consumption rates
- health and safety considerations in terms of working environment, handling and storage of chemicals
- protection systems for normal and emergency operation
- training requirements for system operation, calibration, monitoring and health and safety
- the work plan for supply to ship, installation, commissioning and test
- a statement of the effect that the treated ballast water will have on ballast tank coatings, including copies of relevant studies that support such claims
- an estimate of the reduction in the vessel's ballasting/deballasting rate following installation of the treatment system
 and a description of any mitigation measures (this should include details of pressure drops and the effect that the
 introduction of the treatment equipment will have on ballast pump suction and delivery performance).

When short-listing potential suppliers, in addition to price, operators should consider:

- installation and commissioning costs
- training requirements
- estimated operating costs including consumables
- maintenance requirements; operating experience
- delivery lead times for supply and fitting, and
- any special docking requirements or ship modifications required for equipment installation.

Additional considerations

After technical data has been received from the suppliers, operators should carry out the following engineering checks:

- Ensure that existing auxiliary generators and control systems can cope with the additional power requirements. (For some systems it may be necessary to upgrade generators.)
- Check that treatment equipment can be easily integrated into existing ballast systems.
- Check the suitability of control requirements, including alarms and protective devices.
- Conduct a review of local versus remote operating systems and ease of integration with existing machinery controls.
- Assess ease of maintenance, calibration and ballast water sampling.
- Assess the need for venting or other measures for compartments where active substances (chemical or otherwise) are stored or at risk of escape.
- Review manufacturers' maintenance requirements to confirm which activities the ship's staff are required to perform, what spares and consumables would need to be carried, and what service requirements, if any, would have to be undertaken by the original equipment manufacturer.
- Assess how sediments will be managed.
- Ensure ballast tank gauging will not be affected by the ballast water treatment system. (Pneumatic tank gauges may be
 affected by inerting of ballast tanks.)
- Ensure that the ballast water treatment system arrangements maintain the separation of ballast tanks located within 'gas safe' and 'gas dangerous' zones. In some cases, separate ballast water systems may be required for each zone. Typically, this applies to oil and chemical tankers.

Hazards and safety considerations and hazardous chemical storage and handling

A number of different chemicals or chemical processes are employed in the ballast water treatment systems available, including: chlorination; electrochlorination; ozonation; chlorine dioxide; peracetic acid; hydrogen peroxide; menadine/ vitamin K and perchloric acid.

Some systems generate chemicals during the treatment process; for others, chemicals are required to be stored on board. If chemicals are stored on board, the crew will require training on their use and handling. Suitable storage space for chemicals and proper ventilation are of paramount importance. The Material Safety Data Sheets for chemicals to be stored on board need to be consulted and where necessary the appropriate fire protection and extinction arrangements will need to be installed. Additional Information on the safety precautions for chemicals is provided in Section 6.

In the case of systems that generate chemicals during the treatment process, the crew will require training on the hazards associated with them.

Advice on the storage and handling of chemicals is contained in the IMO Circular, BWM.2/Circ.20 – Guidance to Ensure Safe Handling and Storage of Chemicals and Preparations Used to Treat Ballast Water and the Development of Safety Procedures for Risks to the Ship and Crew Resulting from the Treatment Process.

Inerted ballast tanks and gas hazards

Additional safety procedures need to be available to ships' staff to warn them about the dangers of entering ballast tanks that may have been inerted or have gas residues.

5.3 Installing ballast water treatment systems – general considerations

Consideration must be given to any risks that the installation and operation of the system may introduce on board the ship and how these risks can be mitigated. Risks include the storage of chemicals required for the operation of the system and by-products generated by the system.

In general, the installation of the system must comply with Lloyd's Registers Rules and Regulations for the Classification of Ships (the LR Rules and Regulations) and the relevant statutory regulations such as the BWM Convention and SOLAS.

The system should have a type approval certificate issued by, or on behalf of, a national administration in accordance with regulation D-3 of the BWM Convention and, if operating in US or Canadian waters, an AMS acceptance.

To ensure that the ship's sea water ballast system remains operational in the event of a ballast water treatment system failure or emergency, a suitable by-pass which can be remotely and manually controlled is to be installed.

Operation of the by-pass valve is to activate an audible and visual alarm in all stations from which the ballast water operations are controlled. Alarms are to be recorded by the control equipment.

Safety procedures are to be developed for managing and minimising risks in the design and operation of the treatment unit.

Controls, warnings and alarms

Ballast water management systems should incorporate a visual alarm which is always activated whenever the ballast water treatment system is being cleaned, calibrated or repaired and these events should be recorded by the control equipment. It is recommended that automatic ballast water treatment controls and alarms are integrated with, or located close to, the ship's ballast water controls.

Installation of ballast water treatment systems in hazardous areas

The installation of ballast water treatment systems in hazardous areas will be considered on a case-by-case basis against the requirements of Part 6, Chapter 2, Section 13 of the LR Rules and Regulations (Electrical equipment for use in explosive gas atmospheres or in the presence of combustible dusts). Installation is not to permit ballast water discharge from hazardous areas to non-hazardous areas. By-products of treated ballast water in ballast water tanks located in non-hazardous areas are not to render the area hazardous. Subject to full review and acceptance by LR, transfer of ballast water from machinery spaces to a hazardous area can be accepted but not vice versa.

For existing ships (those already in service) and ships under construction, installation of ballast water treatment systems within the cargo pump room is to be avoided if practical. For ships under construction, an alternative location for the treatment system is to be considered at the design stage.

Technologies

The key technical features of the systems with respect to available ballast water treatment technologies are summarised in Section 9. The table lists the general processes each system employs, but does not compare their specific details. It is worth noting that all of the products for which information is available, other than those based on gas injection, are either modular or can be made modular. Also, where systems are quoted as operating in fresh water, care should be taken to ascertain whether additional services are required (as highlighted in the table) such as addition of salt into the system through a brine. The figures provided in Section 9 are the maximum quoted by the manufacturers.

Flow capacity

Most systems are largely modular in design (other than the gas injection type) so there is no technical limit to the upper flow rate other than that imposed by size and/or cost. The list of available systems shown in Section 9 also refers to the pressure drop for each system.

Effect on ballast tank coatings

The active substances used by ballast water treatment systems may affect tank coatings. The effect on ballast tank coatings is still being researched. However, system manufacturers and coatings manufacturers state that treatment systems that are purely mechanical and do not employ active substances generally do not show a detrimental effect on approved epoxy ballast tank coatings. Research is continuing on the effect of active substances since in some cases the degrading effect on epoxy coatings is not conclusive.

In a number of cases, system manufacturers can provide reports on the effect of their systems on coatings. The Group of Experts on the Scientific Aspects of Marine Environmental Protection "Ballast Water Working Group on Active Substances" (GESAMP–BWWG or WG 34) was established in November 2005 to review any proposals submitted to IMO in preparation for approval of ballast water treatment systems that use active substances. NACE International and IPPIC developed a standard for determining the effect of active substances on ballast tank coatings. This was recently accepted by GESAMP – BWWG and it is expected that GESAMP will apply this standard in future.

Footprint and installation

The footprint of systems, as reported by manufacturers, varies between 2.2 and 15m² for 500 m³/h unit, and while the units may be predominantly modular, this does not imply that the footprint increases proportionately with flow capacity. For most systems it is recommended that installation takes place in the engine/machine room near the existing ballast water pumps, although installation on deck may also be possible if appropriate precautions are taken. If the location is in an explosion zone, then the installation will need explosion proofing.

Costs

The biggest operating cost for most systems is power, and for large power consumers (electrolytic, UV and advanced oxidation processes) availability of shipboard power will be a factor. For chemical dosing systems, required power is very low and chemical costs are the major factor.

Cost data is not provided within this guide. However, when selecting a system, care should be taken in interpreting the cost information since there may be variation in the way underlying costs are calculated between suppliers. In general (except for the few technologies that use stored chemicals and the gas injection units that use fossil fuel) opex should be based on the power required to operate the process (e.g., UV irradiation, electrolysis or ozonation).

Initial key aspects

Vessel type and characteristics. Trading pattern. Ballast capacity and flow rate requirements.

Technical and operational considerations

Time required for treatment to be effective.
Ballast and treatment pumping rates.
Ballast system characteristics (for example, the number of independent systems on board oil tankers).
Health and safety.

In-service requirements.

Explosion proof equipment (for oil tankers, for example). Power requirements and onboard systems.

Effects on tank coatings and corrosion considerations. Controls and alarms.

Space constraints.

Treatment options

Combination filtration and treatment.
Chemical options such as chlorination, ozone, deoxygenation and peracetic acid.
Mechanical means such as cavitation.
UV radiation.
Ultrasonic.

Vendor selection and specification reviews

Vendor experience in supplying similar systems. Equipment approvals. Commercial considerations.

lnstallation planning

At sea or dry docking considerations for existing ships Inclusion in build specifications for new builds.

Figure 6 – Steps to selecting a treatment system

6. Active substances – hazards and safety precautions

Some treatment systems use or generate one or more active substances which are used in the treatment process. In addition, some systems require a neutraliser to be used to ensure that on discharge of ballast any residues of the active substance used in the treatment process are made safe.

The Materials Safety Data Sheet and manufacturer's recommendations should also be obtained for:

- handling and storage of chemicals
- crew safety and emergency procedures in the event of a spill, fire or explosion, and
- appropriate first aid measures in the event of chemicals coming into contact with the skin or being inhaled.

In addition, crews should be instructed in safe handling of chemicals. In some circumstances, further safety precautions may be necessary, including placing special personal protective equipment close to working areas, such as:

- full-face gas respirators or full body protection for dealing with leakages;
- eye wash stations;
- drenching showers; and
- appropriate fire fighting equipment relevant to the hazard.

Some chemical spills may require special cleaning procedures and separate storage facilities should be made available for the removal and temporary storage of clean-up residues.

In other systems an active substance is generated as part of the ballast water treatment process. Advice should be obtained from the system manufacturer on the active substance produced and the associated requirements for crew safety and emergency procedures in the event of a spill, fire or explosion.

7. Frequently asked questions

- O What does "ships constructed in or after" mean?
- A This means ships with a keel laying date on or after 1 January in that year.
- Q What does "date of delivery" mean?
- A This means the date of delivery of a ship as stated on the ship's IOPP Certificate.
- Q What do "ballast water" and "ballast water capacity" mean?
- A The BWM Convention defines ballast water as "water with its suspended matter taken on board a ship to control trim, list, draught, stability or stresses of the ship."
 - Ballast water capacity is the total (100% full) capacity of all ballast water tanks, as shown in the ship's loading manual.
- Q Hopper dredgers: is the water in the hoppers considered to be ballast and does it therefore need to be treated in accordance with the BWM Convention?
- A At MEPC 62, the IMO agreed that water in the hopper area of hopper dredgers is not considered as ballast and issued BWM.2/Circ.32 Applicability of the Ballast Water Management Convention which clarifies the matter.
- Q Can I be issued with a ballast water management certificate for my ship before the BWM Convention enters into force?
- A Lloyd's Register can issue on request a certificate of compliance or statement of compliance with the BWM Convention at any time before entry into force.
 - At MEPC 63, the IMO agreed that once the date of entry into force of the BWM Convention is known, administrations and recognised organisations may issue International Ballast Water Management Certificates endorsed to state they are valid from the entry into force date.
- Q All my ballast is discharged to a shore reception facility. Am I compliant with the BWM Convention?
- A Yes. Ballast discharge ashore does comply with the BWM Convention but the ship will still require an International Ballast Water Management Certificate or Certificate /Statement of Compliance with the BWM Convention, a Ballast Water Management Plan and a Ballast Water Record Book.
- Q Can I use fresh water as ballast and if I do will my ship be in compliance with the BWM Convention?
- A Yes, but only if it is treated. The IMO decided at MEPC 59 that fresh water (even if generated on board) is ballast, as defined by the BWM Convention. Therefore, fresh water used as ballast is to be treated by an approved treatment system and must meet the D-2 standard.
- Q What capacity ballast water treatment system do I need to install?
- A The BWM Convention does not specify what capacity treatment system is required to be installed. Ideally the system should be capable of treating ballast at the maximum ballast pumping rate of the ship.
 - Note that if you choose to install a system that has a rated treatment capacity below the maximum ballast water treatment capacity of the ship then an operational restriction will be incurred. This will restrict the maximum ballast pumping rate to that of the maximum treatment capacity of the system installed. This will need to be clearly documented in the ship's approved Ballast Water Management Plan.
- Q Where will I be permitted to exchange ballast?
- A Whenever possible, conduct ballast water exchange at least 200 nautical miles from the nearest land and in water at least 200 metres deep, taking into account the IMO Guidelines:
 - "In cases where the ship is unable to conduct ballast water exchange as above, this should be as far from the nearest land as possible, and in all cases at least 50 nautical miles from the nearest land and in water at least 200 metres in depth.
 - When these requirements cannot be met areas may be designated where ships can conduct ballast water exchange. All ships shall remove and dispose of sediments from spaces designated to carry ballast water in accordance with the provisions of the ships' Ballast Water Management Plan (Regulation B-4). "
- Q Which ships will require an approved Ballast Water Management Plan?
- A All ships will be required have on board an approved Ballast Water Management Plan.

- Q Is there a template to help me prepare my Ballast Water Management Plan?
- A Yes. Lloyd's Register has produced a Model Ballast Water Management Plan that can be used as a template to develop a Plan for any ship. Download it at www.lr.org/bwm
- Q How can I get my Ballast Water Management Plan approved?
- A LR can approve your Plan. Contact your local office for assistance.
- Q The BWM Convention entry into force date is known but I will not get my Ballast Water Management Plan approved in time what can I do?
- A At MEPC 63 the IMO agreed that provided the Ballast Water Management Plan has been submitted for approval and the administration or a recognised organisation has issued a statement confirming receipt, the ship can trade for no more than three (3) months with an un-approved Plan onboard.
- Q I have a Ballast Water Management Plan approved to Res. A868(20), but not to IMO Resolution MEPC 127(53). What do I need to do?
- A The IMO at MEPC 63 agreed that a Ballast Water Management Plan approved in accordance with A.868(20) will remain valid until the Plan is required to be updated. When a Plan does require updating, for example when a treatment system is installed, then it will need to be amended in accordance with Resolution MEPC 127(53) and be re-approved.
- Q Will port state control (PSC) authorities sample and test ballast?
- A Yes. PSC will have the right to sample and analyse the ballast being discharged to ensure that it has been exchanged (a salinity test) or treated to meet the regulation D-2 standard.
- Q What are the US federal ballast water management requirements?
- A The US regulations on ballast water management entered into force on 21 June, 2012. Ships calling at US ports and intending to discharge ballast will be required to use an approved ballast water treatment system that meets the US discharge standard (which is the same as the IMO D-2 standard), in line with a specific compliance timetable.
 - More information is available from the USCG at http://homeport.uscg.mil/ballastwater

8. Useful references

Other Lloyd's Register ballast water management publications

National Ballast Water Management Requirements Model Ballast Water Management Plan

Both available to download at www.lr.org/bwm

IMO Resolutions and Circulars

MEPC.173(58) - Guidelines for ballast water sampling

MEPC.123(53) - Guidelines for ballast water management equivalent compliance

MEPC.127(53) - Guidelines for ballast water management and development of ballast water management plans

MEPC.124(53) – Guidelines for ballast water exchange

MEPC.162(56) - Guidelines for risk assessment under regulation A-4

MEPC.149(55) - Guidelines for ballast water exchange design and construction standards

MEPC.150(55) - Guidelines on design and construction to facilitate sediment control on ships

MEPC.163(56) – Guidelines for ballast water exchange in the Antarctic Treaty area

MEPC.206(62) - Procedure for approval of 'other methods' of Ballast Water Management under regulation B-3.7

BWM.2/Circ.7 – Interim Survey Guidelines for the purpose of the International Convention for the Control and Management of Ships' Ballast Water and Sediments under the Harmonized System of Survey and Certification (resolution A.948(23))

BWM.2/Circ.20 – Guidance to ensure safe handling and storage of chemicals and preparations used to treat ballast water and the development of safety procedures for risks to the ship and crew resulting from the treatment process.

BWM.2/Circ.29 rev 1 – Clarification Regarding the Application Dates Contained in Regulation B-3.1 of the BWM Convention

BWM.2/Circ.32 – Applicability of the Ballast Water Convention to Hopper Dredgers

Further information is available on the IMO's website at www.imo.org

Globallast Partnerships

Information on the IMO, Global Environment Facility (GEF), and United Nations Development Programme (UNDP) Global Ballast Water Management Programme – http://globallast.imo.org/

United States regulations

United States Coast Guard environmental standards – http://homeport.uscg.mil/ballastwater

California State ballast water legislation – http://www.slc.ca.gov/Spec_Pub/MFD/Ballast_Water/Laws_Regulations.html

VGP: http://cfpub.epa.gov/npdes/vessels/vgpermit.cfm

9. Listing by supplier

Note: to print this page, choose 'File, Print, Current Page, Poster'.

Part	Disinfection Chemical / biological Res	Cav US AO TiO2 TiO2 X X X OH•
Part	x x 4 x	Cav US AO TiO₂ TiO₂ X X
Part	x x 4 x	TiO ₂ TiO ₂ X X X OH•
*** *** ******************************	x x 4 x	TiO ₂ X X OH•
*** **********************************	x x 4 x	X X X OH•
**************************************	x x 4 x	X X OH•
Fig. Street black	x x 4 x	X X OH•
**************************************	x x 4 x	X X OH•
**************************************	x x 4 x	X X OH•
	x x 4 x	X X OH•
Part	x x 4 x	X X OH•
Martine part	x x 4 x	X X OH•
Part	x x 4 x	X OH•
Process Proc	x x 4 x	X OH•
	x x 4 x	X OH•
	x x 4 x	X OH•
Part	x x 4 x	X OH•
	x x 4 x	X OH•
Part Conting	x	X OH•
**************************************	x x x x	X OH•
	x x x x x	X OH•
Property of the content of the con	x x x x	X OH•
	X X X	X OH•
**************************************	X X	X OH•
Part	X X	X OH•
- This series and the	X X	
	X	
Part		
Secondary 1.00 Seco	X	
**************************************	X	
All control protection of the control prot	x x	
Mark or febrology files in the summarrous grapher in the summarrous gr		
Mily Syllenti Lic. Wave Production Control of Mily Syllent Lic. Wave Production Control of	X	
Miles designation of Control Springer (A Disposition of Control Springer (A Dispositio	X	
Miss Engineering A. Spikellanding Memory A. Spikella	x ⁵ >	×
Mittal Engineering A Spikubulling www.mex.co.jp Mittal Engineering A Spikubulling www		
MMC Green Technology AS		
NEI Treatment Systems LLC	· · · · · · · · · · · · · · · · · · ·	X
Nippon Yuka Kogyo Co. Ltd./ Katayama Chemical Inc. SKY-SYSTEM No. Co. Ltd. BlueBallast System No.	X	
NK Co. Ltd. BlueBallast System NK Co. Ltd. BlueBallast System NK Co. Ltd. Sep-07 Nov-07 Yes Jul-09 Nov-09 Apr-13 A	X	×
NK Co. Ltd. BlueBallast System NK Co. Ltd. BlueBallast System NK Co. Ltd. Sep-07 Nov-07 Yes Jul-09 Nov-09 Apr-13 A		
NK Co. Ltd. BlueBallast System NK Co. Ltd. BlueBallast System NK Co. Ltd. ShueBallast System		
Laborated Companies and Compan		
Hypochlorite, Air fresh water Apricinated		
Oceansaver AS (MKI) Oceansaver AS (MKI) Oceansaver AS (MKI) Air, fresh water, heat or steam NIVA Nov-07 Sep-08 Yes Apr-08 Oct-08 Apr-09 Air, fresh water, hypochlorite, hypochloromic acid and hypobromous acid and hypobromous acid	X	X OH•
Oceansaver AS (MKII) www.oceansaver.com NIVA Jun-11 Dec-11 Yes Oct-08 Oct-12 Mar-13 May-13 Sep-13 1 PSU Air, fresh water, heat or steam beneficial effect The strong of	X	X OH•
Optimarin AS	X	
Panasia Co. Ltd. GloEn-PatrolTM www.worldpanasia.com Busan Dec-08 Sep-09 Yes Apr-08 Mar-10 Dec-09 Aug-12 Apr-13 Air 0.6 All salinities	X	
RWO GmbH CleanBallast® NIVA Nov-08 Jan-10 Yes Oct-06 Jul-09 Sep-10 Aug-12 Apr-13 Aug		OH•
	X	
In-situ treatment. An additional An additional Indirect electrolysis EC on uptake and		
Samsung Heavy Industries PurimerTM Saltwater for freshwater 0.2 All salinities Purimer TM Saltwater for freshwater 0.2 All salinities Purime	X	
Severn Trent De Nora BALPURE® Severn Trent De Nora BALPURE® Nacion Severn Trent De Nora BALPURE® Nacion Severn Trent De Nora Gresswater of restriction operation Nacion Severn Trent De Nora Salvater for operation operatio	x	
Signers SeaCURE™ Signers SeaCURE™ SeaCURE™ Signers SeaCURE™ Www.signers.com/seacure CMA 2009 (low salinity), 2010 May-13 (ro 2.45 (for 4000m³) Air and water < 0.5 All salinities (high 100 mg) Signers SeaCURE™ Signers Sea		
required for long journey times)		
Sumitomo Electric Industries Ltd. ECOMARINE™ Sumitomo Electric Industries Ltd. ECOMARINE™ Sumitomo Electric Industries Ltd. Www.global-sei.com JAPAN Jan-12 In progress No N/A N/A In progress N/A	X	
SunRui Marine Environment Engineering Company BalClorTM SunRui Marine Environment Opingdao Dec-09 Dec-10 Yes Mar-10 Oct-10 Jan-11 Jan-11 All salinities Value T.9 (for 2,000m³/h) All salinities Value All salinities All salinities		
Techcross Electro-Cleen™ System www.techcross.net KORDI Aug-07 Aug-07 Yes Mar-06 Oct-08 Dec-08 35 1 3 (for 200m³/h) 2,000m³/h) 73 (for 1000m³/h) 73 (for 10		OH•
Wärtsilä Water Systems Ltd AQUARIUS™ UV		
Wärtsilä Water Systems Ltd. Saltwater for	X	
6,000m ² /n) operation	X	
Wuxi Brightsky Electronic Co. Ltd. BSKY Www.bsky.cn ZhouShan May-10 Jan-11 No N/A Mar-11 Jan-13 Oct-13 114 24 9 5 0.1 6 2.2 7 2.7 2.97 ~ 32 ~ 310 None 0.6 All salinities No active substance Www.bsky.cn ZhouShan May-10 Jan-11 No N/A N/A Mar-11 Jan-13 Oct-13 114 24 9 5 0.1 6 2.2 7 2.7 2.97 ~ 32 ~ 310 None 0.6 All salinities Wixi Brightsky Electronic Co. Ltd. Www.bsky.cn ZhouShan May-10 Jan-11 No N/A	X	x x

Footnotes (numbers in orange)

1 For some systems capacity can be increased by running multiple systems

2 Evonik (www.evonic.de) manufactures and markets PERACLEAN® Ocean (peracetic acid + H₂O₂) for ballast water treatment worldwide

3 Electrocatalysis

4 Optional 5 Plus carbonation

10. Glossary of symbols, terms and abbreviations

AO Advanced oxidation Capex Capital expenditure

Cav Cavitation
Cl Chlorination
Cl₂ Chlorine
ClO₃ Chlorine dioxide

Coagulant (with magnetic particles)

Deox Deoxygenation

EL/EC Electrolysis/electrochlorination

Filt Filtration

H₂O₂
 Hydrogen peroxide
 HC
 Hydrocyclone
 N/A
 Not applicable
 N/R
 Not required
 NaClO
 Sodium hypochlorite

O₃ Ozonation
OH● Hydroxyl radical
Opex Operating expenditure
P/V Pressure / Vacuum
PSU Practical Salinity Unit

Res Residual (chemical reduction)
TRO Total Residual Oxidant
US Ultrasonic treatment
UV Ultraviolet treatment

Organisations and test sites

CMA California Maritime Academy
DHI Danish Hydraulic Institute
GSI Great Ships Initiative

IPPIC International Paint and Printing Ink Council

JAMS Japan Association of Marine Safety

KOMERI Korea Marine Equipment Research Institute
KORDI Korean Ocean Research and Development Institute

MBDC Marine Bio-industry Development Centre

MEA Marine Eco-Analytics

MERC Maritime Environmental Resource Center
MLML Moss Landing Marine Laboratories

MTIC Marine Technology Institute Corporation, Japan

NACE

International The Corrosion Society

NIOZ Royal Netherlands Institute for Sea Research
NIVA Norwegian Institute for Water Research

Test standards

ASTM American Society for Testing and Materials
BSH Bundesamt für Seeschifffahrt und Hydrographie

ETV Environmental Technology Verification

GESAMP Group of Experts on the Scientific Aspects of Marine Environmental Protection

ISO International Organization for Standardization
PSPC Performance Standard for Protective Coatings (IMO)

11. Consultancy capability

When the BWM Convention enters into force it will impose a number of requirements on ship owners and operators. More recently, the USCG has also introduced regulations. For many ships the most practical way to comply with these new regulations will be to install a ballast water treatment system. However, other alternative compliance options may be suitable for certain ship types and trades. Our consultancy services can help you understand the regulations and support you in deciding how best to respond, with bespoke solutions to suit you.

Ballast water management training

We provide standard training courses for shore-based staff covering ballast water regulations, options for compliance, ballast water treatment technologies, and retrofitting issues.

How to comply with the BWM Convention and the USCG requirements

Deciding when and how to comply with upcoming ballast water legislation is critical to the well-being of most ship owners and operators. Making these decisions requires a detailed understanding of the regulations, the compliance options, and the associated technical and commercial risks. Lloyd's Register can help you develop a robust compliance plan for your fleet that identifies the best technology for each ship and a schedule for its implementation.

Ballast water management plans

Our guidance can help you prepare for entry into force of the BWM Convention and provide you with information on national ballast water management requirements. We can also check that your ship-specific ballast water management plans comply with the IMO requirements.

Ballast water treatment system services

Lloyd's Register offers a ballast water treatment selection service that can be tailored to meet your needs and address risk-related issues. We also provide online guidance that lists the systems that are available and explains some of the issues to consider when installing a ballast water treatment system.

Alternative methods of compliance

While most ships will comply with upcoming ballast water legislation by installing a ballast water treatment system, other alternative options can be used: for example, discharging ballast water to a reception facility. Lloyd's Register can help you understand the advantages and disadvantages of the various options and, if suitable, work with other stakeholders to develop a feasibility study and robust risk assessment.

For more information, contact marine-environment@lr.org

Lloyd's Register EMEA Mountbatten House, 1 Grosvenor Square Southampton SO15 2JU United Kingdom

E marine-environment@lr.org www.lr.org/bwm